Mountain Car Continuous Control with VPG

import numpy as np import scipy.signal from gym.spaces import Box, Discrete import torch import torch.nn as nn from torch.distributions.normal import Normal from torch.distributions.categorical import Categorical from torch.optim import Adam import gym import time
def combined_shape(length, shape=None): if shape is None: return (length,) return (length, shape) if np.isscalar(shape) else (length, *shape) def mlp(sizes, activation, output_activation=nn.Identity): layers = [] for j in range(len(sizes)-1): act = activation if j < len(sizes)-2 else output_activation layers += [nn.Linear(sizes[j], sizes[j+1]), act()] return nn.Sequential(*layers) def count_vars(module): return sum([np.prod(p.shape) for p in module.parameters()]) def discount_cumsum(x, discount): """ magic from rllab for computing discounted cumulative sums of vectors. input: vector x, [x0, x1, x2] output: [x0 + discount * x1 + discount^2 * x2, x1 + discount * x2, x2] """ return scipy.signal.lfilter([1], [1, float(-discount)], x[::-1], axis=0)[::-1] class Actor(nn.Module): def _distribution(self, obs): raise NotImplementedError def _log_prob_from_distribution(self, pi, act): raise NotImplementedError def forward(self, obs, act=None): # Produce action distributions for given observations, and # optionally compute the log likelihood of given actions under # those distributions. pi = self._distribution(obs) logp_a = None if act is not None: logp_a = self._log_prob_from_distribution(pi, act) return pi, logp_a class MLPCategoricalActor(Actor): def __init__(self, obs_dim, act_dim, hidden_sizes, activation): super().__init__() self.logits_net = mlp([obs_dim] + list(hidden_sizes) + [act_dim], activation) def _distribution(self, obs): logits = self.logits_net(obs) return Categorical(logits=logits) def _log_prob_from_distribution(self, pi, act): return pi.log_prob(act) class MLPGaussianActor(Actor): def __init__(self, obs_dim, act_dim, hidden_sizes, activation): super().__init__() log_std = -0.5 * np.ones(act_dim, dtype=np.float32) self.log_std = torch.nn.Parameter(torch.as_tensor(log_std)) self.mu_net = mlp([obs_dim] + list(hidden_sizes) + [act_dim], activation) def _distribution(self, obs): mu = self.mu_net(obs) std = torch.exp(self.log_std) return Normal(mu, std) def _log_prob_from_distribution(self, pi, act): return pi.log_prob(act).sum(axis=-1) # Last axis sum needed for Torch Normal distribution class MLPCritic(nn.Module): def __init__(self, obs_dim, hidden_sizes, activation): super().__init__() self.v_net = mlp([obs_dim] + list(hidden_sizes) + [1], activation) def forward(self, obs): return torch.squeeze(self.v_net(obs), -1) # Critical to ensure v has right shape. class MLPActorCritic(nn.Module): def __init__(self, observation_space, action_space, hidden_sizes=(64,64), activation=nn.Tanh): super().__init__() obs_dim = observation_space.shape[0] # policy builder depends on action space if isinstance(action_space, Box): self.pi = MLPGaussianActor(obs_dim, action_space.shape[0], hidden_sizes, activation) elif isinstance(action_space, Discrete): self.pi = MLPCategoricalActor(obs_dim, action_space.n, hidden_sizes, activation) # build value function self.v = MLPCritic(obs_dim, hidden_sizes, activation) def step(self, obs): with torch.no_grad(): pi = self.pi._distribution(obs) a = pi.sample() logp_a = self.pi._log_prob_from_distribution(pi, a) v = self.v(obs) return a.numpy(), v.numpy(), logp_a.numpy() def act(self, obs): return self.step(obs)[0]
class VPGBuffer: """ A buffer for storing trajectories experienced by a VPG agent interacting with the environment, and using Generalized Advantage Estimation (GAE-Lambda) for calculating the advantages of state-action pairs. """ def __init__(self, obs_dim, act_dim, size, gamma=0.99, lam=0.95): self.obs_buf = np.zeros(combined_shape(size, obs_dim), dtype=np.float32) self.act_buf = np.zeros(combined_shape(size, act_dim), dtype=np.float32) self.adv_buf = np.zeros(size, dtype=np.float32) self.rew_buf = np.zeros(size, dtype=np.float32) self.ret_buf = np.zeros(size, dtype=np.float32) self.val_buf = np.zeros(size, dtype=np.float32) self.logp_buf = np.zeros(size, dtype=np.float32) self.gamma, self.lam = gamma, lam self.ptr, self.path_start_idx, self.max_size = 0, 0, size def store(self, obs, act, rew, val, logp): """ Append one timestep of agent-environment interaction to the buffer. """ assert self.ptr < self.max_size # buffer has to have room so you can store self.obs_buf[self.ptr] = obs self.act_buf[self.ptr] = act self.rew_buf[self.ptr] = rew self.val_buf[self.ptr] = val self.logp_buf[self.ptr] = logp self.ptr += 1 def finish_path(self, last_val=0): """ Call this at the end of a trajectory, or when one gets cut off by an epoch ending. This looks back in the buffer to where the trajectory started, and uses rewards and value estimates from the whole trajectory to compute advantage estimates with GAE-Lambda, as well as compute the rewards-to-go for each state, to use as the targets for the value function. The "last_val" argument should be 0 if the trajectory ended because the agent reached a terminal state (died), and otherwise should be V(s_T), the value function estimated for the last state. This allows us to bootstrap the reward-to-go calculation to account for timesteps beyond the arbitrary episode horizon (or epoch cutoff). """ path_slice = slice(self.path_start_idx, self.ptr) rews = np.append(self.rew_buf[path_slice], last_val) vals = np.append(self.val_buf[path_slice], last_val) # the next two lines implement GAE-Lambda advantage calculation deltas = rews[:-1] + self.gamma * vals[1:] - vals[:-1] self.adv_buf[path_slice] = discount_cumsum(deltas, self.gamma * self.lam) # the next line computes rewards-to-go, to be targets for the value function self.ret_buf[path_slice] = discount_cumsum(rews, self.gamma)[:-1] self.path_start_idx = self.ptr def get(self): """ Call this at the end of an epoch to get all of the data from the buffer, with advantages appropriately normalized (shifted to have mean zero and std one). Also, resets some pointers in the buffer. """ assert self.ptr == self.max_size # buffer has to be full before you can get self.ptr, self.path_start_idx = 0, 0 # the next line implement the advantage normalization trick self.adv_buf = (self.adv_buf - np.mean(self.adv_buf)) / np.std(self.adv_buf) data = dict(obs=self.obs_buf, act=self.act_buf, ret=self.ret_buf, adv=self.adv_buf, logp=self.logp_buf) return {k: torch.as_tensor(v, dtype=torch.float32) for k,v in data.items()} def vpg(env_fn, actor_critic=MLPActorCritic, ac_kwargs=dict(), seed=0, steps_per_epoch=4000, epochs=50, gamma=0.99, pi_lr=3e-4, vf_lr=1e-3, train_v_iters=80, lam=0.97, max_ep_len=1000, logger_kwargs=dict(), save_freq=10): """ Vanilla Policy Gradient (with GAE-Lambda for advantage estimation) Args: env_fn : A function which creates a copy of the environment. The environment must satisfy the OpenAI Gym API. actor_critic: The constructor method for a PyTorch Module with a ``step`` method, an ``act`` method, a ``pi`` module, and a ``v`` module. The ``step`` method should accept a batch of observations and return: =========== ================ ====================================== Symbol Shape Description =========== ================ ====================================== ``a`` (batch, act_dim) | Numpy array of actions for each | observation. ``v`` (batch,) | Numpy array of value estimates | for the provided observations. ``logp_a`` (batch,) | Numpy array of log probs for the | actions in ``a``. =========== ================ ====================================== The ``act`` method behaves the same as ``step`` but only returns ``a``. The ``pi`` module's forward call should accept a batch of observations and optionally a batch of actions, and return: =========== ================ ====================================== Symbol Shape Description =========== ================ ====================================== ``pi`` N/A | Torch Distribution object, containing | a batch of distributions describing | the policy for the provided observations. ``logp_a`` (batch,) | Optional (only returned if batch of | actions is given). Tensor containing | the log probability, according to | the policy, of the provided actions. | If actions not given, will contain | ``None``. =========== ================ ====================================== The ``v`` module's forward call should accept a batch of observations and return: =========== ================ ====================================== Symbol Shape Description =========== ================ ====================================== ``v`` (batch,) | Tensor containing the value estimates | for the provided observations. (Critical: | make sure to flatten this!) =========== ================ ====================================== ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object you provided to VPG. seed (int): Seed for random number generators. steps_per_epoch (int): Number of steps of interaction (state-action pairs) for the agent and the environment in each epoch. epochs (int): Number of epochs of interaction (equivalent to number of policy updates) to perform. gamma (float): Discount factor. (Always between 0 and 1.) pi_lr (float): Learning rate for policy optimizer. vf_lr (float): Learning rate for value function optimizer. train_v_iters (int): Number of gradient descent steps to take on value function per epoch. lam (float): Lambda for GAE-Lambda. (Always between 0 and 1, close to 1.) max_ep_len (int): Maximum length of trajectory / episode / rollout. logger_kwargs (dict): Keyword args for EpochLogger. save_freq (int): How often (in terms of gap between epochs) to save the current policy and value function. """ # Random seed torch.manual_seed(seed) np.random.seed(seed) # Instantiate environment env = env_fn() obs_dim = env.observation_space.shape act_dim = env.action_space.shape # Create actor-critic module ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs) # Count variables var_counts = tuple(count_vars(module) for module in [ac.pi, ac.v]) print('\nNumber of parameters: \t pi: %d, \t v: %d\n'%var_counts) # Set up experience buffer local_steps_per_epoch = int(steps_per_epoch) buf = VPGBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam) # Set up function for computing VPG policy loss def compute_loss_pi(data): obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data['logp'] # Policy loss pi, logp = ac.pi(obs, act) loss_pi = -(logp * adv).mean() # Useful extra info approx_kl = (logp_old - logp).mean().item() ent = pi.entropy().mean().item() pi_info = dict(kl=approx_kl, ent=ent) return loss_pi, pi_info # Set up function for computing value loss def compute_loss_v(data): obs, ret = data['obs'], data['ret'] return ((ac.v(obs) - ret)**2).mean() # Set up optimizers for policy and value function pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr) vf_optimizer = Adam(ac.v.parameters(), lr=vf_lr) def update(): data = buf.get() # Train policy with a single step of gradient descent pi_optimizer.zero_grad() loss_pi, pi_info = compute_loss_pi(data) loss_pi.backward() pi_optimizer.step() # Value function learning for i in range(train_v_iters): vf_optimizer.zero_grad() loss_v = compute_loss_v(data) loss_v.backward() vf_optimizer.step() print('LossPi: {:.4f}, LossV: {:.4f}'.format(loss_pi.item(), loss_v.item())) # Prepare for interaction with environment start_time = time.time() o, ep_ret, ep_len = env.reset(), 0, 0 # Main loop: collect experience in env and update/log each epoch for epoch in range(epochs): for t in range(local_steps_per_epoch): a, v, logp = ac.step(torch.as_tensor(o, dtype=torch.float32)) a = np.clip(a, -1, 1) next_o, r, d, _ = env.step(a) ep_ret += r ep_len += 1 # save and log buf.store(o, a, r, v, logp) # Update obs (critical!) o = next_o timeout = ep_len == max_ep_len terminal = d or timeout epoch_ended = t==local_steps_per_epoch-1 if terminal or epoch_ended: if epoch_ended and not(terminal): print('Warning: trajectory cut off by epoch at %d steps.'%ep_len, flush=True) # if trajectory didn't reach terminal state, bootstrap value target if timeout or epoch_ended: _, v, _ = ac.step(torch.as_tensor(o, dtype=torch.float32)) else: v = 0 buf.finish_path(v) if terminal: print('Episodic Return: {:.2f}, Episodic Length: {:.2f}'.format(ep_ret, ep_len)) o, ep_ret, ep_len = env.reset(), 0, 0 # Perform VPG update! update() print('Epoch: {}, TotalEnvInteracts: {}'.format(epoch, (epoch+1)*steps_per_epoch))
import argparse parser = argparse.ArgumentParser() parser.add_argument('--env', type=str, default='MountainCarContinuous-v0') parser.add_argument('--hid', type=int, default=64) # number of neurons for hidden layer parser.add_argument('--l', type=int, default=2) # number of hidden layers parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--seed', '-s', type=int, default=0) parser.add_argument('--steps', type=int, default=4000) parser.add_argument('--epochs', type=int, default=500) args, unknown = parser.parse_known_args() vpg(lambda : gym.make(args.env), actor_critic=MLPActorCritic, ac_kwargs=dict(hidden_sizes=[args.hid]*args.l), gamma=args.gamma, seed=args.seed, steps_per_epoch=args.steps, epochs=args.epochs,)
Number of parameters: 	 pi: 4418, 	 v: 4417

Episodic Return: -29.95, Episodic Length: 999.00
Episodic Return: -29.77, Episodic Length: 999.00
Episodic Return: -30.82, Episodic Length: 999.00
Episodic Return: -31.10, Episodic Length: 999.00
Warning: trajectory cut off by epoch at 4 steps.
LossPi: -0.1057, LossV: 0.4318
Epoch: 0, TotalEnvInteracts: 4000
Episodic Return: -31.91, Episodic Length: 999.00
Episodic Return: -31.17, Episodic Length: 999.00
Episodic Return: -32.05, Episodic Length: 999.00
Episodic Return: -29.97, Episodic Length: 999.00
Warning: trajectory cut off by epoch at 4 steps.
LossPi: -0.0380, LossV: 0.4265
Epoch: 1, TotalEnvInteracts: 8000
Episodic Return: -31.23, Episodic Length: 999.00
Episodic Return: -31.77, Episodic Length: 999.00
Episodic Return: -30.81, Episodic Length: 999.00
Episodic Return: -30.77, Episodic Length: 999.00
Warning: trajectory cut off by epoch at 4 steps.
LossPi: -0.0442, LossV: 0.4196
Epoch: 2, TotalEnvInteracts: 12000
Episodic Return: -31.10, Episodic Length: 999.00
Episodic Return: -30.84, Episodic Length: 999.00
Episodic Return: -30.74, Episodic Length: 999.00
Episodic Return: -31.43, Episodic Length: 999.00
Warning: trajectory cut off by epoch at 4 steps.
LossPi: -0.0442, LossV: 0.4219
Epoch: 3, TotalEnvInteracts: 16000
Episodic Return: -31.07, Episodic Length: 999.00
Episodic Return: -31.80, Episodic Length: 999.00
Episodic Return: -32.52, Episodic Length: 999.00
Episodic Return: -31.45, Episodic Length: 999.00
Warning: trajectory cut off by epoch at 4 steps.
LossPi: -0.0418, LossV: 0.4225
Epoch: 4, TotalEnvInteracts: 20000
Episodic Return: -30.85, Episodic Length: 999.00
Episodic Return: -29.22, Episodic Length: 999.00
Episodic Return: -31.52, Episodic Length: 999.00
Episodic Return: -32.24, Episodic Length: 999.00
Warning: trajectory cut off by epoch at 4 steps.
LossPi: -0.0477, LossV: 0.4354
Epoch: 5, TotalEnvInteracts: 24000
Episodic Return: -30.87, Episodic Length: 999.00
Episodic Return: -32.10, Episodic Length: 999.00
Episodic Return: -29.42, Episodic Length: 999.00
Episodic Return: -31.16, Episodic Length: 999.00
Warning: trajectory cut off by epoch at 4 steps.



---------------------------------------------------------------------------

KeyboardInterrupt                         Traceback (most recent call last)

Input In [18], in <cell line: 12>()
      9 parser.add_argument('--epochs', type=int, default=500)
     10 args, unknown = parser.parse_known_args()
---> 12 vpg(lambda : gym.make(args.env), actor_critic=MLPActorCritic,
     13     ac_kwargs=dict(hidden_sizes=[args.hid]*args.l), gamma=args.gamma, 
     14     seed=args.seed, steps_per_epoch=args.steps, epochs=args.epochs,)


Input In [17], in vpg(env_fn, actor_critic, ac_kwargs, seed, steps_per_epoch, epochs, gamma, pi_lr, vf_lr, train_v_iters, lam, max_ep_len, logger_kwargs, save_freq)
    240         o, ep_ret, ep_len = env.reset(), 0, 0
    242 # Perform VPG update!
--> 243 update()
    244 print('Epoch: {}, TotalEnvInteracts: {}'.format(epoch, (epoch+1)*steps_per_epoch))


Input In [17], in vpg.<locals>.update()
    199     vf_optimizer.zero_grad()
    200     loss_v = compute_loss_v(data)
--> 201     loss_v.backward()
    202     vf_optimizer.step()
    204 print('LossPi: {:.4f}, LossV: {:.4f}'.format(loss_pi.item(), loss_v.item()))


File ~/miniforge3/envs/mujoco/lib/python3.8/site-packages/torch/_tensor.py:307, in Tensor.backward(self, gradient, retain_graph, create_graph, inputs)
    298 if has_torch_function_unary(self):
    299     return handle_torch_function(
    300         Tensor.backward,
    301         (self,),
   (...)
    305         create_graph=create_graph,
    306         inputs=inputs)
--> 307 torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)


File ~/miniforge3/envs/mujoco/lib/python3.8/site-packages/torch/autograd/__init__.py:154, in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)
    151 if retain_graph is None:
    152     retain_graph = create_graph
--> 154 Variable._execution_engine.run_backward(
    155     tensors, grad_tensors_, retain_graph, create_graph, inputs,
    156     allow_unreachable=True, accumulate_grad=True)


KeyboardInterrupt: