Mountain Car Continuous Control with VPG
import numpy as np
import scipy.signal
from gym.spaces import Box, Discrete
import torch
import torch.nn as nn
from torch.distributions.normal import Normal
from torch.distributions.categorical import Categorical
from torch.optim import Adam
import gym
import time
def combined_shape(length, shape=None):
if shape is None:
return (length,)
return (length, shape) if np.isscalar(shape) else (length, *shape)
def mlp(sizes, activation, output_activation=nn.Identity):
layers = []
for j in range(len(sizes)-1):
act = activation if j < len(sizes)-2 else output_activation
layers += [nn.Linear(sizes[j], sizes[j+1]), act()]
return nn.Sequential(*layers)
def count_vars(module):
return sum([np.prod(p.shape) for p in module.parameters()])
def discount_cumsum(x, discount):
"""
magic from rllab for computing discounted cumulative sums of vectors.
input:
vector x,
[x0,
x1,
x2]
output:
[x0 + discount * x1 + discount^2 * x2,
x1 + discount * x2,
x2]
"""
return scipy.signal.lfilter([1], [1, float(-discount)], x[::-1], axis=0)[::-1]
class Actor(nn.Module):
def _distribution(self, obs):
raise NotImplementedError
def _log_prob_from_distribution(self, pi, act):
raise NotImplementedError
def forward(self, obs, act=None):
pi = self._distribution(obs)
logp_a = None
if act is not None:
logp_a = self._log_prob_from_distribution(pi, act)
return pi, logp_a
class MLPCategoricalActor(Actor):
def __init__(self, obs_dim, act_dim, hidden_sizes, activation):
super().__init__()
self.logits_net = mlp([obs_dim] + list(hidden_sizes) + [act_dim], activation)
def _distribution(self, obs):
logits = self.logits_net(obs)
return Categorical(logits=logits)
def _log_prob_from_distribution(self, pi, act):
return pi.log_prob(act)
class MLPGaussianActor(Actor):
def __init__(self, obs_dim, act_dim, hidden_sizes, activation):
super().__init__()
log_std = -0.5 * np.ones(act_dim, dtype=np.float32)
self.log_std = torch.nn.Parameter(torch.as_tensor(log_std))
self.mu_net = mlp([obs_dim] + list(hidden_sizes) + [act_dim], activation)
def _distribution(self, obs):
mu = self.mu_net(obs)
std = torch.exp(self.log_std)
return Normal(mu, std)
def _log_prob_from_distribution(self, pi, act):
return pi.log_prob(act).sum(axis=-1)
class MLPCritic(nn.Module):
def __init__(self, obs_dim, hidden_sizes, activation):
super().__init__()
self.v_net = mlp([obs_dim] + list(hidden_sizes) + [1], activation)
def forward(self, obs):
return torch.squeeze(self.v_net(obs), -1)
class MLPActorCritic(nn.Module):
def __init__(self, observation_space, action_space,
hidden_sizes=(64,64), activation=nn.Tanh):
super().__init__()
obs_dim = observation_space.shape[0]
if isinstance(action_space, Box):
self.pi = MLPGaussianActor(obs_dim, action_space.shape[0], hidden_sizes, activation)
elif isinstance(action_space, Discrete):
self.pi = MLPCategoricalActor(obs_dim, action_space.n, hidden_sizes, activation)
self.v = MLPCritic(obs_dim, hidden_sizes, activation)
def step(self, obs):
with torch.no_grad():
pi = self.pi._distribution(obs)
a = pi.sample()
logp_a = self.pi._log_prob_from_distribution(pi, a)
v = self.v(obs)
return a.numpy(), v.numpy(), logp_a.numpy()
def act(self, obs):
return self.step(obs)[0]
class VPGBuffer:
"""
A buffer for storing trajectories experienced by a VPG agent interacting
with the environment, and using Generalized Advantage Estimation (GAE-Lambda)
for calculating the advantages of state-action pairs.
"""
def __init__(self, obs_dim, act_dim, size, gamma=0.99, lam=0.95):
self.obs_buf = np.zeros(combined_shape(size, obs_dim), dtype=np.float32)
self.act_buf = np.zeros(combined_shape(size, act_dim), dtype=np.float32)
self.adv_buf = np.zeros(size, dtype=np.float32)
self.rew_buf = np.zeros(size, dtype=np.float32)
self.ret_buf = np.zeros(size, dtype=np.float32)
self.val_buf = np.zeros(size, dtype=np.float32)
self.logp_buf = np.zeros(size, dtype=np.float32)
self.gamma, self.lam = gamma, lam
self.ptr, self.path_start_idx, self.max_size = 0, 0, size
def store(self, obs, act, rew, val, logp):
"""
Append one timestep of agent-environment interaction to the buffer.
"""
assert self.ptr < self.max_size
self.obs_buf[self.ptr] = obs
self.act_buf[self.ptr] = act
self.rew_buf[self.ptr] = rew
self.val_buf[self.ptr] = val
self.logp_buf[self.ptr] = logp
self.ptr += 1
def finish_path(self, last_val=0):
"""
Call this at the end of a trajectory, or when one gets cut off
by an epoch ending. This looks back in the buffer to where the
trajectory started, and uses rewards and value estimates from
the whole trajectory to compute advantage estimates with GAE-Lambda,
as well as compute the rewards-to-go for each state, to use as
the targets for the value function.
The "last_val" argument should be 0 if the trajectory ended
because the agent reached a terminal state (died), and otherwise
should be V(s_T), the value function estimated for the last state.
This allows us to bootstrap the reward-to-go calculation to account
for timesteps beyond the arbitrary episode horizon (or epoch cutoff).
"""
path_slice = slice(self.path_start_idx, self.ptr)
rews = np.append(self.rew_buf[path_slice], last_val)
vals = np.append(self.val_buf[path_slice], last_val)
deltas = rews[:-1] + self.gamma * vals[1:] - vals[:-1]
self.adv_buf[path_slice] = discount_cumsum(deltas, self.gamma * self.lam)
self.ret_buf[path_slice] = discount_cumsum(rews, self.gamma)[:-1]
self.path_start_idx = self.ptr
def get(self):
"""
Call this at the end of an epoch to get all of the data from
the buffer, with advantages appropriately normalized (shifted to have
mean zero and std one). Also, resets some pointers in the buffer.
"""
assert self.ptr == self.max_size
self.ptr, self.path_start_idx = 0, 0
self.adv_buf = (self.adv_buf - np.mean(self.adv_buf)) / np.std(self.adv_buf)
data = dict(obs=self.obs_buf, act=self.act_buf, ret=self.ret_buf,
adv=self.adv_buf, logp=self.logp_buf)
return {k: torch.as_tensor(v, dtype=torch.float32) for k,v in data.items()}
def vpg(env_fn, actor_critic=MLPActorCritic, ac_kwargs=dict(), seed=0,
steps_per_epoch=4000, epochs=50, gamma=0.99, pi_lr=3e-4,
vf_lr=1e-3, train_v_iters=80, lam=0.97, max_ep_len=1000,
logger_kwargs=dict(), save_freq=10):
"""
Vanilla Policy Gradient
(with GAE-Lambda for advantage estimation)
Args:
env_fn : A function which creates a copy of the environment.
The environment must satisfy the OpenAI Gym API.
actor_critic: The constructor method for a PyTorch Module with a
``step`` method, an ``act`` method, a ``pi`` module, and a ``v``
module. The ``step`` method should accept a batch of observations
and return:
=========== ================ ======================================
Symbol Shape Description
=========== ================ ======================================
``a`` (batch, act_dim) | Numpy array of actions for each
| observation.
``v`` (batch,) | Numpy array of value estimates
| for the provided observations.
``logp_a`` (batch,) | Numpy array of log probs for the
| actions in ``a``.
=========== ================ ======================================
The ``act`` method behaves the same as ``step`` but only returns ``a``.
The ``pi`` module's forward call should accept a batch of
observations and optionally a batch of actions, and return:
=========== ================ ======================================
Symbol Shape Description
=========== ================ ======================================
``pi`` N/A | Torch Distribution object, containing
| a batch of distributions describing
| the policy for the provided observations.
``logp_a`` (batch,) | Optional (only returned if batch of
| actions is given). Tensor containing
| the log probability, according to
| the policy, of the provided actions.
| If actions not given, will contain
| ``None``.
=========== ================ ======================================
The ``v`` module's forward call should accept a batch of observations
and return:
=========== ================ ======================================
Symbol Shape Description
=========== ================ ======================================
``v`` (batch,) | Tensor containing the value estimates
| for the provided observations. (Critical:
| make sure to flatten this!)
=========== ================ ======================================
ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object
you provided to VPG.
seed (int): Seed for random number generators.
steps_per_epoch (int): Number of steps of interaction (state-action pairs)
for the agent and the environment in each epoch.
epochs (int): Number of epochs of interaction (equivalent to
number of policy updates) to perform.
gamma (float): Discount factor. (Always between 0 and 1.)
pi_lr (float): Learning rate for policy optimizer.
vf_lr (float): Learning rate for value function optimizer.
train_v_iters (int): Number of gradient descent steps to take on
value function per epoch.
lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
close to 1.)
max_ep_len (int): Maximum length of trajectory / episode / rollout.
logger_kwargs (dict): Keyword args for EpochLogger.
save_freq (int): How often (in terms of gap between epochs) to save
the current policy and value function.
"""
torch.manual_seed(seed)
np.random.seed(seed)
env = env_fn()
obs_dim = env.observation_space.shape
act_dim = env.action_space.shape
ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
var_counts = tuple(count_vars(module) for module in [ac.pi, ac.v])
print('\nNumber of parameters: \t pi: %d, \t v: %d\n'%var_counts)
local_steps_per_epoch = int(steps_per_epoch)
buf = VPGBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)
def compute_loss_pi(data):
obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data['logp']
pi, logp = ac.pi(obs, act)
loss_pi = -(logp * adv).mean()
approx_kl = (logp_old - logp).mean().item()
ent = pi.entropy().mean().item()
pi_info = dict(kl=approx_kl, ent=ent)
return loss_pi, pi_info
def compute_loss_v(data):
obs, ret = data['obs'], data['ret']
return ((ac.v(obs) - ret)**2).mean()
pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
vf_optimizer = Adam(ac.v.parameters(), lr=vf_lr)
def update():
data = buf.get()
pi_optimizer.zero_grad()
loss_pi, pi_info = compute_loss_pi(data)
loss_pi.backward()
pi_optimizer.step()
for i in range(train_v_iters):
vf_optimizer.zero_grad()
loss_v = compute_loss_v(data)
loss_v.backward()
vf_optimizer.step()
print('LossPi: {:.4f}, LossV: {:.4f}'.format(loss_pi.item(), loss_v.item()))
start_time = time.time()
o, ep_ret, ep_len = env.reset(), 0, 0
for epoch in range(epochs):
for t in range(local_steps_per_epoch):
a, v, logp = ac.step(torch.as_tensor(o, dtype=torch.float32))
a = np.clip(a, -1, 1)
next_o, r, d, _ = env.step(a)
ep_ret += r
ep_len += 1
buf.store(o, a, r, v, logp)
o = next_o
timeout = ep_len == max_ep_len
terminal = d or timeout
epoch_ended = t==local_steps_per_epoch-1
if terminal or epoch_ended:
if epoch_ended and not(terminal):
print('Warning: trajectory cut off by epoch at %d steps.'%ep_len, flush=True)
if timeout or epoch_ended:
_, v, _ = ac.step(torch.as_tensor(o, dtype=torch.float32))
else:
v = 0
buf.finish_path(v)
if terminal:
print('Episodic Return: {:.2f}, Episodic Length: {:.2f}'.format(ep_ret, ep_len))
o, ep_ret, ep_len = env.reset(), 0, 0
update()
print('Epoch: {}, TotalEnvInteracts: {}'.format(epoch, (epoch+1)*steps_per_epoch))
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='MountainCarContinuous-v0')
parser.add_argument('--hid', type=int, default=64)
parser.add_argument('--l', type=int, default=2)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--seed', '-s', type=int, default=0)
parser.add_argument('--steps', type=int, default=4000)
parser.add_argument('--epochs', type=int, default=500)
args, unknown = parser.parse_known_args()
vpg(lambda : gym.make(args.env), actor_critic=MLPActorCritic,
ac_kwargs=dict(hidden_sizes=[args.hid]*args.l), gamma=args.gamma,
seed=args.seed, steps_per_epoch=args.steps, epochs=args.epochs,)
Number of parameters: pi: 4418, v: 4417
Episodic Return: -29.95, Episodic Length: 999.00
Episodic Return: -29.77, Episodic Length: 999.00
Episodic Return: -30.82, Episodic Length: 999.00
Episodic Return: -31.10, Episodic Length: 999.00
Warning: trajectory cut off by epoch at 4 steps.
LossPi: -0.1057, LossV: 0.4318
Epoch: 0, TotalEnvInteracts: 4000
Episodic Return: -31.91, Episodic Length: 999.00
Episodic Return: -31.17, Episodic Length: 999.00
Episodic Return: -32.05, Episodic Length: 999.00
Episodic Return: -29.97, Episodic Length: 999.00
Warning: trajectory cut off by epoch at 4 steps.
LossPi: -0.0380, LossV: 0.4265
Epoch: 1, TotalEnvInteracts: 8000
Episodic Return: -31.23, Episodic Length: 999.00
Episodic Return: -31.77, Episodic Length: 999.00
Episodic Return: -30.81, Episodic Length: 999.00
Episodic Return: -30.77, Episodic Length: 999.00
Warning: trajectory cut off by epoch at 4 steps.
LossPi: -0.0442, LossV: 0.4196
Epoch: 2, TotalEnvInteracts: 12000
Episodic Return: -31.10, Episodic Length: 999.00
Episodic Return: -30.84, Episodic Length: 999.00
Episodic Return: -30.74, Episodic Length: 999.00
Episodic Return: -31.43, Episodic Length: 999.00
Warning: trajectory cut off by epoch at 4 steps.
LossPi: -0.0442, LossV: 0.4219
Epoch: 3, TotalEnvInteracts: 16000
Episodic Return: -31.07, Episodic Length: 999.00
Episodic Return: -31.80, Episodic Length: 999.00
Episodic Return: -32.52, Episodic Length: 999.00
Episodic Return: -31.45, Episodic Length: 999.00
Warning: trajectory cut off by epoch at 4 steps.
LossPi: -0.0418, LossV: 0.4225
Epoch: 4, TotalEnvInteracts: 20000
Episodic Return: -30.85, Episodic Length: 999.00
Episodic Return: -29.22, Episodic Length: 999.00
Episodic Return: -31.52, Episodic Length: 999.00
Episodic Return: -32.24, Episodic Length: 999.00
Warning: trajectory cut off by epoch at 4 steps.
LossPi: -0.0477, LossV: 0.4354
Epoch: 5, TotalEnvInteracts: 24000
Episodic Return: -30.87, Episodic Length: 999.00
Episodic Return: -32.10, Episodic Length: 999.00
Episodic Return: -29.42, Episodic Length: 999.00
Episodic Return: -31.16, Episodic Length: 999.00
Warning: trajectory cut off by epoch at 4 steps.
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
Input In [18], in <cell line: 12>()
9 parser.add_argument('--epochs', type=int, default=500)
10 args, unknown = parser.parse_known_args()
---> 12 vpg(lambda : gym.make(args.env), actor_critic=MLPActorCritic,
13 ac_kwargs=dict(hidden_sizes=[args.hid]*args.l), gamma=args.gamma,
14 seed=args.seed, steps_per_epoch=args.steps, epochs=args.epochs,)
Input In [17], in vpg(env_fn, actor_critic, ac_kwargs, seed, steps_per_epoch, epochs, gamma, pi_lr, vf_lr, train_v_iters, lam, max_ep_len, logger_kwargs, save_freq)
240 o, ep_ret, ep_len = env.reset(), 0, 0
242 # Perform VPG update!
--> 243 update()
244 print('Epoch: {}, TotalEnvInteracts: {}'.format(epoch, (epoch+1)*steps_per_epoch))
Input In [17], in vpg.<locals>.update()
199 vf_optimizer.zero_grad()
200 loss_v = compute_loss_v(data)
--> 201 loss_v.backward()
202 vf_optimizer.step()
204 print('LossPi: {:.4f}, LossV: {:.4f}'.format(loss_pi.item(), loss_v.item()))
File ~/miniforge3/envs/mujoco/lib/python3.8/site-packages/torch/_tensor.py:307, in Tensor.backward(self, gradient, retain_graph, create_graph, inputs)
298 if has_torch_function_unary(self):
299 return handle_torch_function(
300 Tensor.backward,
301 (self,),
(...)
305 create_graph=create_graph,
306 inputs=inputs)
--> 307 torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
File ~/miniforge3/envs/mujoco/lib/python3.8/site-packages/torch/autograd/__init__.py:154, in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)
151 if retain_graph is None:
152 retain_graph = create_graph
--> 154 Variable._execution_engine.run_backward(
155 tensors, grad_tensors_, retain_graph, create_graph, inputs,
156 allow_unreachable=True, accumulate_grad=True)
KeyboardInterrupt: