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An Example of Pareto Policy Pool

Ablation Study

Supervised learning

Model-based RL is a promising paradigm for offline policy learning because

• However, directly maximizing !𝑅 usually fails due to the epistemic 
uncertainty of model on out-of-distribution (OOD) state-action pairs.

• The policy may suffer from “model exploitation”, i.e., it achieves a high 
model return by repeatedly visiting some OOD pairs but performs poorly
in the real environment.

A widely-used solution to this problem is uncertainty regularization:

• Its performance significantly relies on the trade-off between model 
reward and uncertainty in the optimization objective.

• However, it is usually challenging or intractable to determine the optimal 
trade-off under offline RL.

• the learned model fully exploits the pre-collected data (offline dataset);
• the agent avoids costly interactions with real environments required by online 

RL, but instead interacts with a virtual environment and aims to maximize:

, i.e., model-estimated return.

Regularization term:
the epistemic uncertainty of model.

Hyperparameter controls the 
trade-off between !𝒓 and 𝒖.

To avoid those challenges caused by uncertainty-regularized methods,
we study a bi-objective formulation for model-based offline RL

• that aims at producing a pool of diverse policies on the Pareto front 
performing different levels of trade-offs,

• thus it provides the flexibility to select the best trade-off policy for the 
testing environment from the pool.

Single-objective optimization

Our Bi-objective optimization

• Pareto policy 1 is overly optimal on the model return, so it runs fast at the beginning         
but quickly falls to the ground due to the “model exploitation”.

• Pareto policy 4 suppressing model uncertainty is overly conservative, which keeps standing 
because it avoids taking exploratory actions that potentially increase the uncertainty.

• Pareto policy 2&3 with the more balanced trade-off between the model return and 
uncertainty perform better and achieve higher scores in the testing environment.

• By running multiple instances with different regularization weights, MOPO and MOReL can 
only produce a few separated policies, and it is difficult to find a promising policy that 
outperforms the policies trained by our methods.

(Diverse Pareto Polices) P3 generates multiple reference vectors 
{𝑣!}!"#$ in the objective space, each forming a constraint to the 
bi-objective optimization and targeting a different region on the 
Pareto front, and optimizes the policy 𝜋! by Alg. 2 towards 𝑣!

(Local Pareto Extension to Reduce Training Cost) Each 𝑣! is perturbed in opposing directions, 
and then these perturbed vectors are further optimized via Alg. 2, with intermediate policies 
being added to the policy pool.

• P3 achieves the highest average-score over all datasets compared to 
recently proposed methods, including model-based and -free ones.

• P3 significantly outperforms the baseline methods in 5 out of the 9 
low/medium-quality datasets, showing its advantages on learning from 
non-expert experiences.

• Online selection of multiple policies required by P3 can be expensive. We 
replace the online selection with FQE, an offline policy evaluation method, 
which (approximately) evaluates each Pareto policy using offline data only.

• We surprisingly find that “P3+FQE (offline policy selection)” only slightly 
degrades from the original P3 on the performance but results in the same 
inference cost as other baselines.

We conduct a thorough ablation study towards five variants of P3, each removing/changing 
one component used in P3.

• The combination of our proposed methods brings the most improvements.

Model-based offline RL’s performance in the real environment (heatmap) under different 
trade-offs between the model return (y-axis) and uncertainty (x-axis).

• Exploring the whole Pareto front (P3 does) is essential to our appealing results on low-
quality datasets.

• Carefully tuning the trade-off (other baselines do) suffices to find a good policy for 
high-quality datasets since the optimal policies gather in a small region and associate 
with one trade-off level.
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