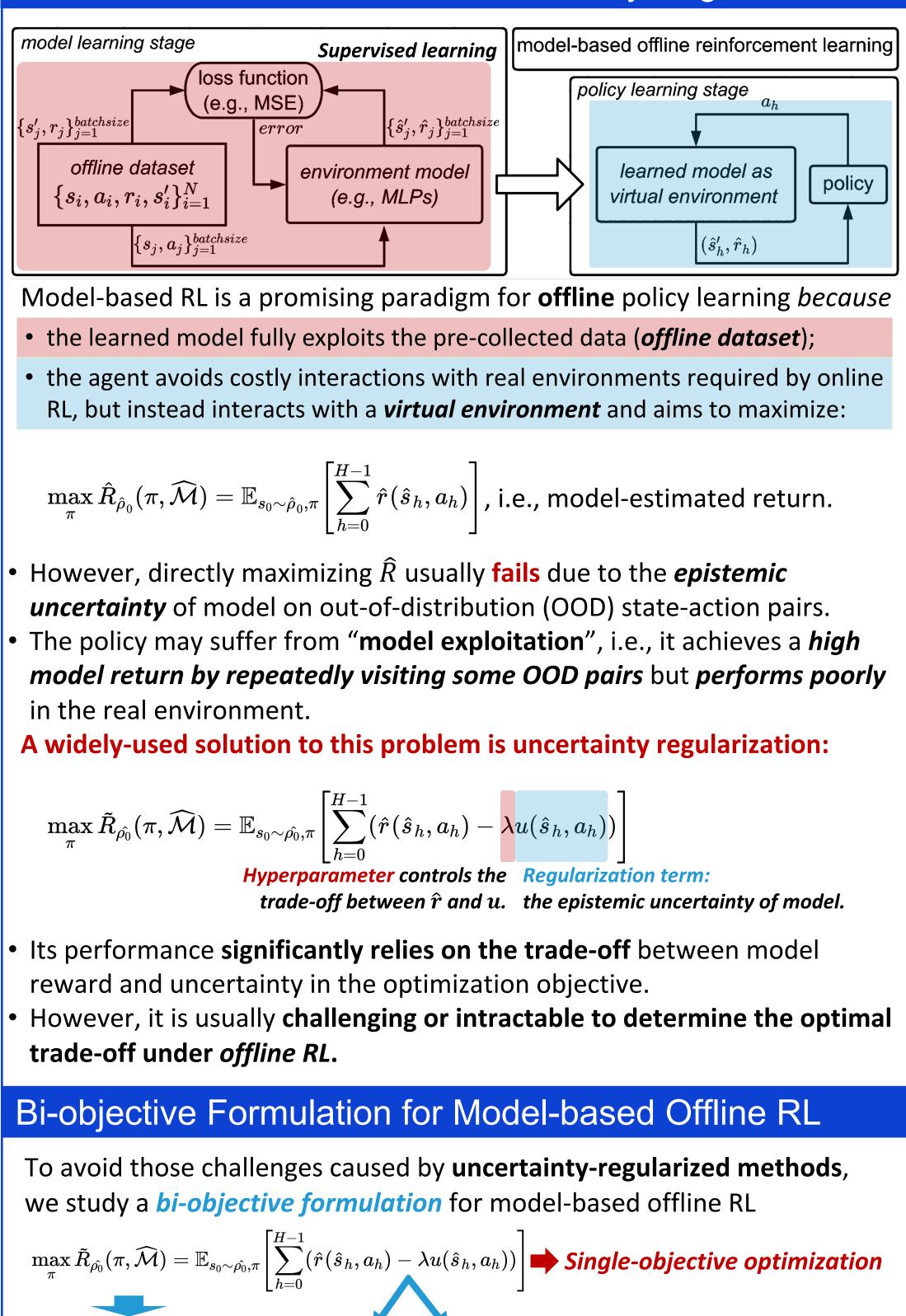
Pareto Policy Pool for Model-based Offline Reinforcement Learning

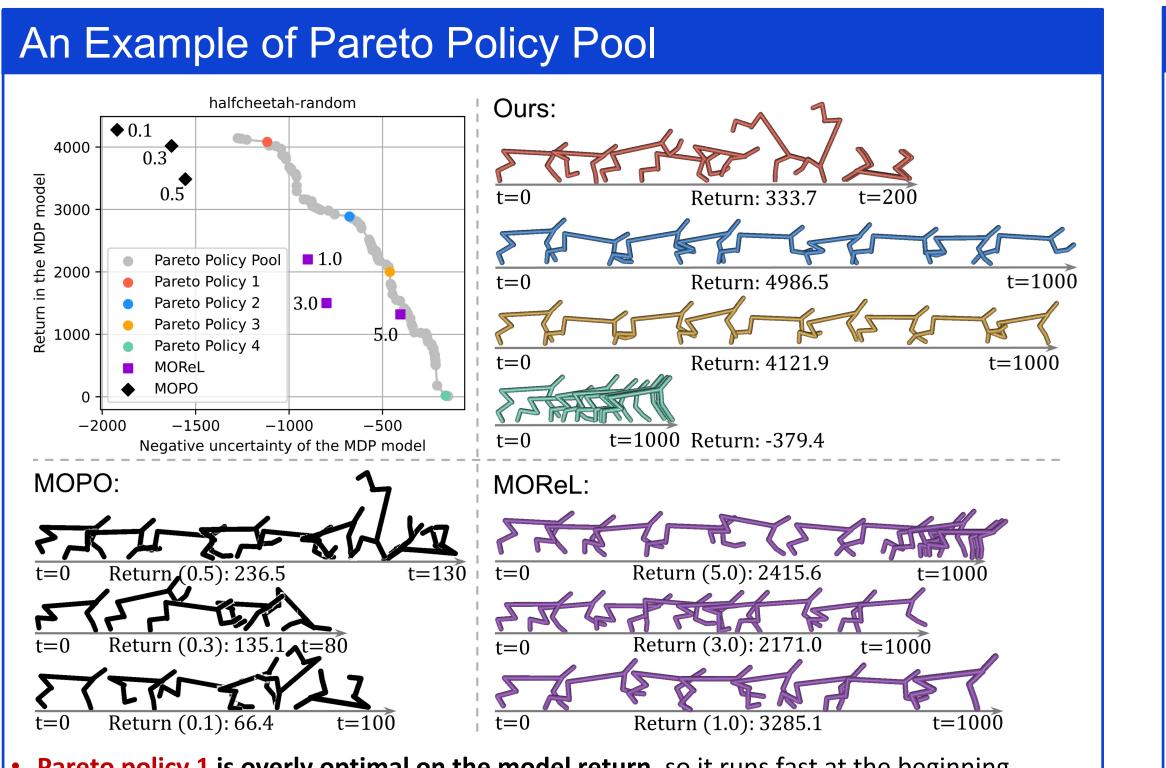
Yijun Yang^{1,4}, Jing Jiang¹, Tianyi Zhou^{2,3}, Jie Ma¹, Yuhui Shi⁴ ¹Australian AI Institute, University of Technology Sydney; ²University of Maryland, College Park; ⁴CSE, Southern University of Science and Technology {yijun.yang-1, jie.ma-5}@student.uts.edu.au, jing.jiang@uts.edu.au, tianyizh@uw.edu, shiyh@sustech.edu.cn*

Model-based Offline RL with Uncertainty Regularization



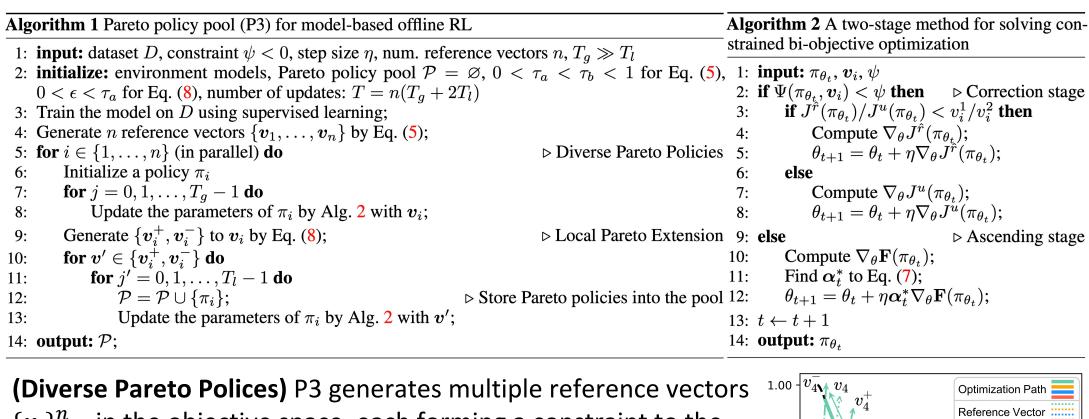
 $\max_{\pi} \mathbf{J}_{\hat{\rho}_0}(\pi, \widehat{\mathcal{M}}) = \mathbb{E}_{s_0 \sim \hat{\rho}_0, \pi} \left| \sum_{h=0}^{n-1} \left(\hat{r}(\hat{s}_h, a_h), -u(\hat{s}_h, a_h) \right)^{\mathsf{T}} \right| \Rightarrow \text{Our Bi-objective optimization}$

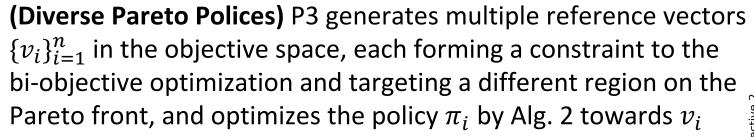
- that aims at producing a pool of diverse policies on the Pareto front performing different levels of trade-offs,
- thus it provides the flexibility to select the best trade-off policy for the testing environment from the pool.



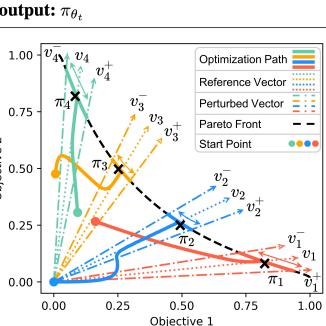
- **Pareto policy 1 is overly optimal on the model return,** so it runs fast at the beginning but quickly falls to the ground due to the "model exploitation".
- Pareto policy 4 suppressing model uncertainty is overly conservative, which keeps standing because it avoids taking exploratory actions that potentially increase the uncertainty.
- Pareto policy 2&3 with the more balanced trade-off between the model return and uncertainty perform better and achieve higher scores in the testing environment.
- By running multiple instances with different regularization weights, MOPO and MOReL can only produce a few separated policies, and it is difficult to find a promising policy that outperforms the policies trained by our methods.

Our Method: Pareto Policy Pool (P3)

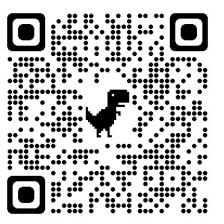




$$egin{aligned} &\max_{\pi} \mathbf{J}_{\hat{
ho}_0}(\pi,\widehat{\mathcal{M}}) = \mathbb{E}_{s_0\sim\hat{
ho}_0,\pi} \Bigg[\sum_{h=0}^{H-1} (\hat{r}(\hat{s}_h,a_h),-u(\hat{s}_h,a_h))^\mathsf{T} \ & ext{ s.t. } \Psi(\pi,v_i) \triangleq -D_{ ext{KL}}igg(rac{v_i}{\|v_i\|_1}\|rac{\mathbf{J}(\pi)}{\|\mathbf{J}(\pi)\|_1}igg) \geq \psi \end{aligned}$$



(Local Pareto Extension to Reduce Training Cost) Each v_i is perturbed in opposing directions, and then these perturbed vectors are further optimized via Alg. 2, with intermediate policies being added to the policy pool.



Experiments on D4RL Gym Benchmark												
		BCQ	BEAR	CQL	UWAC*	TD3+BC	МОРО	MOPO*	MOReL	COMBO*	P3+FQE	P3
Random	HalfCheetah	2.2 ±0.1	2.3 ±0.1	21.7 ±0.6	14.5 ±3.3	10.6 ±1.7	35.9 ±2.9	35.4 ±2.5	30.3 ±5.9	38.8	37.4 ±5.1	40.6 ±3.7
	Hopper	$8.1\pm\!0.5$	3.9 ± 2.3	8.1 ±1.4	22.4 ± 12.1	8.6 ± 0.4	16.7 ±12.2	11.7 ± 0.4	44.8 ±4.8	17.9	33.8 ±0.4	35.4 ±0.8
	Walker2d	4.6 ± 0.7	$\textbf{12.8} \pm 10.2$	0.5 ±1.3	15.5 ± 11.7	1.5 ± 1.4	4.2 ± 5.7	13.6 ± 2.6	17.3 ± 8.2	7.0	19.7 ± 0.5	22.9 ±0.6
Medium -replay Medium	HalfCheetah	45.4 ± 1.7	$\textbf{42.9} \pm 0.2$	49.2 ±0.3	46.5 ± 2.5	$\textbf{47.8} \pm 0.4$	73.1 ±2.4	$\textbf{42.3} \pm 1.6$	$\textbf{20.4} \pm 13.8$	54.2	61.4 ±2.0	64.7 ±1.6
	Hopper	$\textbf{53.9} \pm 3.7$	51.8 ± 3.9	62.7 ±3.7	$\textbf{88.9} \pm 12.2$	69. 1 ±4.5	$\textbf{38.3} \pm \textbf{34.9}$	$\textbf{28.0} \pm 12.4$	$\textbf{53.2} \pm 32.1$	94.9	105.9 ± 1.4	106.8 ±0.7
	Walker2d	74.5 ±3.7	-0.2 ± 0.1	57.5 ±8.3	$\textbf{57.5} \pm 7.8$	81.3 ± 3.0	41.2 ± 30.8	17.8 ± 19.3	10.3 ± 8.9	75.5	71.1 ± 3.5	81.3 ±2.0
	HalfCheetah	40.9 ± 1.1	36.3 ±3.1	$\textbf{47.2} \pm 0.4$	46.8 ±3.0	44.8 ± 0.5	69.2 ±1.1	53.1 ± 2.0	$\textbf{31.9} \pm \textbf{6.1}$	55.1	43.4 ±1.1	$\textbf{48.2} \pm 0.6$
	Hopper	$\textbf{40.9} \pm 16.7$	$\textbf{52.2} \pm 19.3$	$\textbf{28.6} \pm 0.9$	39.4 ±6.1	$\textbf{57.8} \pm 17.3$	32.7 ± 9.4	67.5 ± 24.7	$\textbf{54.2} \pm 32.1$	73.1	89.5 ±2.0	94.6 ±1.4
	Walker2d	$\textbf{42.5} \pm 13.7$	$\textbf{6.9} \pm 7.8$	$45.3 \pm \!\! 2.7$	$\textbf{27.0} \pm \textbf{6.3}$	81.9 ±2.7	73.7 ± 9.4	$\textbf{39.0} \pm \textbf{9.6}$	13.7 ± 8.1	56	60.1 ±9.5	64.0 ± 8.2
	Mean	34.8 ±4.7	23.2 ±5.2	$\textbf{35.6} \pm 2.2$	39.8 ±7.2	44.8 ±3.5	42.8 ±12.1	34.3 ± 8.3	30.7 ±13.3	52.5	58.0 ±2.8	62.1 ±2.2
Medium Expert -expert	HalfCheetah	92.7 ±2.5	92.7 ±0.6	97.5 ±1.8	128.6 ±2.9	96.3 ±0.9	81.3 ± 21.8	_	2.2 ± 5.4	_	81.4 ±1.72	$\textbf{88.8} \pm 0.4$
	Hopper	105.3 ± 8.1	$\textbf{54.6} \pm 21.1$	$105.4 \pm \! 5.9$	135.0 ±14.1	$\textbf{109.5} \pm 4.1$	62.5 ± 28.9	_	$\textbf{26.2} \pm 13.9$	_	110.6 ± 1.2	111.3 ± 0.5
	Walker2d	$109.1\pm\!\!0.4$	$106.8 \pm \! 6.8$	108.9 ± 0.4	121.1 ±22.4	110.3 ± 0.4	62.4 ±3.2	_	- 0.3 ±0.3	_	$102.0\pm\!\!3.4$	106.7 ± 0.2
	HalfCheetah	93.9 ±1.2	$\textbf{46.1} \pm 4.7$	70.6 ±13.6	127.4 ±3.7	88.9 ±5.3	70.3 ± 21.9	$\textbf{63.3} \pm 38.0$	$\textbf{35.9} \pm 19.2$	90	57.1 ±16.0	69.9 ±10.5
	Hopper	108.6 ± 5.9	$\textbf{50.6} \pm 25.3$	111.0 ± 1.2	134.7 ±21.2	$\textbf{102.0} \pm 10.1$	60.6 ± 32.5	$\textbf{23.7} \pm 6.0$	52.1 ± 27.7	111.1	109.4 ±1.3	110.8 ± 0.5
	Walker2d	109.7 ± 0.6	22.1 ± 44.5	109.7 ± 0.3	99.7 ±12.2	110.5 ±0.3	77.4 ±27.9	$44.6\pm\!\!12.9$	3.9 ± 2.8	96.1	90.3 ±4.2	98.9 ±3.4
	Mean	103.2 ±3.1	62.2 ±17.2	100.5 ± 3.9	124.4 ±12.8	102.9 ± 3.5	69. 1 ±22.7	43.9 ±19.0	$\textbf{20.0} \pm 7.7$	99.1	91.8 ±4.6	97.7 ±2.6
Total	Mean	62.2 ±4.1	38.8 ±10.0	61.6 ±2.9	73.6 ±9.4	68.0 ±3.5	53.3 ±16.3	36.8 ±11.0	26.4 ±11.1	64.2	71.5 ±3.5	76.3 ±2.4

Table 1: **Results on D4RL Gym experiments.** Normalized score (mean±std) over the final 10 evaluations and 5 seeds. * marks previously reported results. Dataset quality gradually improves from Random to Medium-expert.

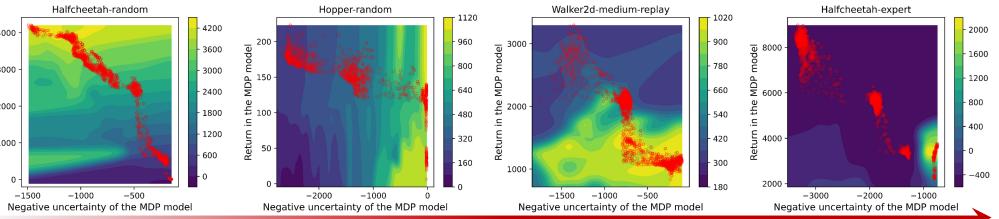
- P3 achieves the **highest average-score over all datasets** compared to recently proposed methods, including model-based and -free ones. P3 significantly outperforms the baseline methods in 5 out of the 9
- **low/medium-quality datasets**, showing its advantages on learning from non-expert experiences.
- Online selection of multiple policies required by P3 can be expensive. We replace the online selection with FQE, an offline policy evaluation method, which (approximately) evaluates each Pareto policy using offline data only. We surprisingly find that **"P3+FQE (offline policy selection)" only slightly degrades from the original P3** on the performance but results in the same inference cost as other baselines.

Ablation Study

Data Quality	Random			N	Iedium-replay		Medium-expert		
Environment	HalfCheetah	Hopper	Walker2d	HalfCheetah	Hopper	Walker2d	HalfCheetah	Hopper	Walker2d
P3: scalarization	15.5 ± 0.8	32.3 ±1.5	1 5 .2 ±5.0	40.1 ±1.4	88.5 ±8.3	49.9 ±15.0	52.4 ±7.3	77.3 ±22.9	84.7 ±8.5
P3: no StateNorm	$35.3\pm\!\!2.5$	$\textbf{34.9} \pm 0.2$	$21.8\pm\!0.3$	41.7 ± 0.4	82.3 ±12.9	61.6 ±9.4	47.1 ± 0.3	99.9 ±6.0	90.3 ±2.2
P3: no RankShaping	37.6 ± 4.4	$\textbf{33.6} \pm 0.3$	27.3 ±6.2	44.3 ± 0.7	$\textbf{95.6} \pm 1.7$	64.7 ±3.9	66.3 ±1.9	108.3 ± 1.2	97.0 ±2.6
P3: no ParetoExtension	31.2 ± 2.4	5.2 ± 0.4	0.1 ± 0.2	43.4 ±1.6	$91.3 \pm \!$	2.0 ± 0.6	4.7 ±3.2	88.2 ±16.4	0.3 ± 0.1
P3: no BehaviorCloning	38.2 ±1.4	35.5 ±0.5	24.1 ± 1.1	45.4 ±1.8	97.1 ±2.1	$26.1 \pm \!\!4.9$	52.2 ±3.5	89.8 ±16.6	69.1 ±9.1
P3: our version	40.6 ±3.7	35.4 ±0.8	$\textbf{22.9} \pm 0.6$	$48.2\pm\!0.6$	94.6 ±1.4	$64.0\pm\!\!8.2$	$\textbf{69.9} \pm 10.5$	110.8 ±0.5	98.9 ±3.4
МОРО	35.9 ±2.9	16.7 ±12.2	4.2 ±5.7	69.2 ±1.1	32.7 ±9.4	73.7 ±9.4	70.3 ±21.9	60.6 ±32.5	77.4 ±27.9
TD3+BC	10.6 ± 1.7	8.6 ±0.4	1.5 ±1.4	44.8 ±0.5	$\textbf{57.8} \pm 17.3$	81.9 ±2.7	88.9 ±5.3	$\textbf{102.0} \pm 10.1$	110.5 ±0.3

We conduct a thorough ablation study towards five variants of P3, each removing/changing one component used in P3.

The combination of our proposed methods brings the most improvements.



Low

The quality of datasets

Hiah

Model-based offline RL's performance in the real environment (heatmap) under different trade-offs between the model return (**y-axis**) and uncertainty (**x-axis**).

- Exploring the whole Pareto front (P3 does) is essential to our appealing results on lowquality datasets.
- Carefully tuning the trade-off (**other baselines do**) suffices to find a good policy for high-quality datasets since the optimal policies gather in a small region and associate with one trade-off level.