Pareto Policy Pool for Model-based Offline Reinforcement Learning
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An Example of Pareto Policy Pool
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Model-based RL is a promising paradigm for offline policy learning because
e the learned model fully exploits the pre-collected data (offline dataset);

* the agent avoids costly interactions with real environments required by online
RL, but instead interacts with a virtual environment and aims to maximize:

H-1
max R, (m, M) = Eq v x Y " #(3n,a1)|, i.e., model-estimated return.
h=0

 However, directly maximizing R usually fails due to the epistemic
uncertainty of model on out-of-distribution (OOD) state-action pairs.

* The policy may suffer from “model exploitation”, i.e., it achieves a high
model return by repeatedly visiting some OOD pairs but performs poorly
in the real environment.

A widely-used solution to this problem is uncertainty regularization:
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Hyperparameter controls the Regularization term:
trade-off between 1" and u. the epistemic uncertainty of model.

* |ts performance significantly relies on the trade-off between model
reward and uncertainty in the optimization objective.

 However, it is usually challenging or intractable to determine the optimal
trade-off under offline RL.

Bi-objective Formulation for Model-based Offline RL

To avoid those challenges caused by uncertainty-regularized methods,
we study a bi-objective formulation for model-based offline RL
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m) Single-objective optimization
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m) Our Bi-objective optimization
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* that aims at producing a pool of diverse policies on the Pareto front
performing different levels of trade-offs,

* thus it provides the flexibility to select the best trade-off policy for the
testing environment from the pool.

halfcheetah-random OU rs:
¢0.1 N &
4000 - 03
[ g
© 0.5
£ 3000 - .
2
o Pareto Policy Pool  ®1.0
E =000 ® Pareto Policy 1
= ® Pareto Policy 2 3.0m 3
E: 1 Pareto Policy 3
& Ha00 Pareto Policy 4 5:0
B MOReL
o] & moro
—2000 —1;')00 —1&)00 —5IOO
Negative uncertainty of the MDP model t=0 t=1000 Return: -379.4
MOPO: MOReL.:
t=0 Return: 0.5):236.5 o t=136 t=0 Return (5.0): 2415.6 t=1000
t=0 Return (0.3): 135/.1 t=§6 t=0 Return (3.0): 2171.0 t=1()())
ek ‘W"‘fﬂZLL _
t=0 Return (0.1): 66.4 t=100 t=0 Return (1.0): 3285.1 t=1000

* Pareto policy 1 is overly optimal on the model return, so it runs fast at the beginning
but quickly falls to the ground due to the “model exploitation”.

* Pareto policy 4 suppressing model uncertainty is overly conservative, which keeps standing
because it avoids taking exploratory actions that potentially increase the uncertainty.

e Pareto po with the more balanced trade-off between the model return and
uncertainty perform better and achieve higher scores in the testing environment.

* By running multiple instances with different regularization weights, MOPO and MORel can
only produce a few separated policies, and it is difficult to find a promising policy that
outperforms the policies trained by our methods.

Our Method: Pareto Policy Pool (P3)

Algorithm 2 A two-stage method for solving con-
strained bi-objective optimization

Algorithm 1 Pareto policy pool (P3) for model-based offline RL

1: input: dataset D, constraint ¢ < 0, step size n, num. reference vectors n, T4 > T;
2: initialize: environment models, Pareto policy pool P = @, 0 < 7, < 7, < 1 for Eq. (5), 1: input: my,, v;, ¥
0 < € < 7, for Eq. (8), number of updates: T' = n(T, + 2T;) 2: if W(my,,v;) <t then > Correction stage
: Train the model on D using supervised learning; if J7 (7g,)/J%(ma,) < vi/v? then

ot

3
4: Generate n reference vectors {v1, ..., v,} by Eq. (5); 4: Compute Vg J" (9, );
5: fori € {1,...,n} (in parallel) do > Diverse Pareto Policies 5: 0i11 = 0y +nVoJ" (m,);
6: Initialize a policy 7; 6: else
7: forj=0,1,...,7, — 1do 7: Compute Vo J* (g, );
8: Update the parameters of 7; by Alg. 2 with v;; 8: 0111 = 0 +nVeJ"(me,);
9: Generate {'UZ+ ,v; }tow; by Eq. (8); > Local Pareto Extension 9: else > Ascending stage
10: for v’ € {v;",v; } do 10: Compute VoF (7, );
11: for /' =0,1,...,7;, — 1do 11: Find o to Eq. (7);
12: P=PuU{m}; > Store Pareto policies into the pool 12: 0141 = 0 + na;VeF(m,);
13: Update the parameters of 7; by Alg. 2 with v’; 13: t—t+1
14: output: P; 14: output: 7,

(Diverse Pareto Polices) P3 generates multiple reference vectors 100{"sajv
{v;}}=, in the objective space, each forming a constraint to the
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(Local Pareto Extension to Reduce Training Cost) Each v; is perturbed in opposing directions,
and then these perturbed vectors are further optimized via Alg. 2, with intermediate policies
being added to the policy pool.
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Experiments on D4RL Gym Benchmark

BCQ BEAR CQL UWAC* TD3+BC MOPO MOPO* MOReL COMBO* P3+FQE P3
g HalfCheetah 2.2+£0.1 2.3 £0.1 21.7 +£0.6 14.5 +£3.3 10.6 +1.7 359 +£2.9 354 £2.5 30.3 £5.9 38.8 374 £5.1 40.6 £3.7
g Hopper 8.1 £0.5 39+23 8.1+14 224 +12.1 8.6 £0.4 16.7+12.2 11.7+0.4 44.8 +4.8 17.9 33.8£04 354 +0.8
M Walker2d 4.6 £0.7 12.8 £10.2 0.5+£13 15.5 £11.7 1.5+14 42457 13.6 £2.6 17.3 £8.2 7.0 19.7 £0.5 22.9 £0.6
g HalfCheetah 454 £1.7 42.9+0.2 49.2 +£0.3 46.5 £2.5 47.8 £0.4 73.1+2.4 423 +1.6 204 £13.8 54.2 61.4 £2.0 64.7 £1.6
"g Hopper 53.9 £3.7 51.8£3.9 62.7 +£3.7 88.9 £12.2 69.1 +4.5 3834349 28.0+12.4 53.2+32.1 949 1059 £1.4 106.8 0.7
= Walker2d 74.5 £3.7 -0.2 +0.1 57.5 +8.3 57.5 £7.8 81.3 £3.0 412 +30.8 17.8+19.3 103 +8.9 75.5 VoIl 22335 81.3 +2.0
g > HalfCheetah 409 £1.1 36.3 £3.1 472404 46.8 £3.0 44.8 £0.5 69.2 +1.1 53.1+£2.0 31.9 +6.1 55.1 434 £1.1 48.2 £0.6
§ 'S Hopper 40.9 +16.7 52.2£19.3 28.6 £0.9 39.4 6.1 57.8£17.3 327494 67.5+£24.7 542 +32.1 73.1 89.5 £2.0 94.6 1.4
S
= " Walker2d 42.5 +13.7 6.9 £7.8 453 +2.7 27.0 +£6.3 81.9 £2.7 73.7+9.4 39.0 £9.6 13.7 £8.1 56 60.1 +9.5 64.0 £8.2
Mean 34.8 £4.7 232 +£5.2 356 £2.2 39.8£7.2 44.8 3.5 42.8 £12.1 343483 30.7 £13.3 52.5 58.0 £2.8 62.1 £2.2
g HalfCheetah 92.7+£2.5 92.7 £0.6 97.5£1.8 128.6 +-2.9 96.3 £0.9 81.3 +21.8 - 22454 - 81.4 +1.72 88.8 £0.4
& Hopper 105.3 £8.1 54.6 £21.1 1054 £5.9 135.0 £14.1  109.5 £4.1 62.5 £28.9 - 26.2 +£13.9 — 1106 £1.2 111.3 £0.5
M Walker2d 109.1 £0.4 106.8 6.8 108.9 £0.4 121.1 £22.4  110.3 £0.4 62.4 +3.2 - -0.3 +£0.3 — 102.0£34 106.7 £0.2
g 5 HalfCheetah 939 +1.2 46.1 £4.7 70.6 £13.6 127.4 £3.7 88.9 £5.3 703 £21.9 63.3+38.0 359+£192 90 57.1 £16.0 69.9 +£10.5
'§ % Hopper 108.6 5.9 50.6 £253 111.0£1.2 134.7 £21.2  102.0 £10.1  60.6 £32.5 23.7 +6.0 52.1 £27.7 111.1 1094 £1.3 110.8 +0.5
= T Walker2d 109.7 £0.6 22.1 +44.5 109.7£0.3 99.7£12.2 110.5+0.3 774 £279 44.6+12.9 39+28 96.1 90.3 +4.2 989 +3.4
Mean 103.2 £3.1 622 +17.2 100.5£3.9 124.4 +£12.8  102.9 £3.5 69.1 £22.7 439+19.0 20.0+7.7 99.1 91.8 £4.6 97.7£2.6
Total Mean 62.2 +4.1 38.8 £10.0 61.6 £2.9 73.6 £9.4 68.0 £3.5 533+£163 36.8+11.0 264=£I11.1 64.2 71.5 £3.5 76.3 £2.4

Table 1: Results on D4RL Gym experiments. Normalized score (mean4=std) over the final 10 evaluations and 5
seeds. * marks previously reported results. Dataset quality gradually improves from Random to Medium-expert.

* P3 achieves the highest average-score over all datasets compared to
recently proposed methods, including model-based and -free ones.
* P3significantly outperforms the baseline methods in 5 out of the 9
low/medium-quality datasets, showing its advantages on learning from
non-expert experiences.
* Online selection of multiple policies required by P3 can be expensive. We
replace the online selection with FQE, an offline policy evaluation method,
which (approximately) evaluates each Pareto policy using offline data only.
* We surprisingly find that “P3+FQE (offline policy selection)” only slightly
degrades from the original P3 on the performance but results in the same
inference cost as other baselines.

Ablation Study

Data Quality Random Medium-replay Medium-expert

Environment HalfCheetah Hopper Walker2d | HalfCheetah Hopper Walker2d | HalfCheetah Hopper Walker2d
P3: scalarization 15.5 +£0.8 323 +1.5 152+£50 | 40.1+£14 88.5 +8.3 499 +150 | 524+73 773 £22.9 84.7 £8.5
P3: no StateNorm 35.3 125 34.9 £0.2 21.8+£03 | 41.7+04 82.3+129 61.6+94 47.1 £0.3 99.9 +6.0 90.3 £2.2
P3: no RankShaping 37.6 +4.4 33.6 £0.3 273 +£6.2 | 44.3 £0.7 95.6 £1.7 64.7 £3.9 66.3 £1.9 108.3 £1.2 97.0 £2.6
P3: no ParetoExtension ~ 31.2 +£2.4 52404 0.1+02 | 434+1.6 91.3 £4.9 2.0 £0.6 4.7+£3.2 88.2 £16.4 0.3 £0.1
P3: no BehaviorCloning  38.2 +1.4 35.5 +£0.5 2414+1.1 | 454418 97.1 £2.1 26.1 £4.9 522 +3.5 89.8 +16.6 69.1 £9.1
P3: our version 40.6 £3.7 354 +£0.8 229 +0.6 | 48.2+0.6 94.6 £1.4 64.0 £8.2 69.9 £10.5 110.8 £0.5 98.9 £3.4
MOPO 35.9+2.9 16.7 £12.2 42457 | 69.2+1.1 32.7+94 73.7+9.4 70.3 £21.9 60.6 £32.5 774 +£27.9
TD3+4+BC 10.6 £1.7 8.6 £0.4 1.5+1.4 | 448 +0.5 57.8 £17.3 819 42.7 88.9 +5.3 102.0 £10.1  110.5+0.3

We conduct a thorough ablation study towards five variants of P3, each removing/changing
one component used in P3.
The combination of our proposed methods brings the most improvements.
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trade-offs between the model return (y-axis) and uncertainty (x-axis).

* Exploring the whole Pareto front (P3 does) is essential to our appealing results on low-

quality datasets.

* Carefully tuning the trade-off (other baselines do) suffices to find a good policy for
high-quality datasets since the optimal policies gather in a small region and associate
with one trade-off level.




